
Dr e v prasad
Dt. 12.10.17

Characteristics of Multiprocessors
Interconnection Structures
Inter Processor Arbitration
Inter Processor communication and synchronization
Cache Coherence

Contents
Characteristics of Multiprocessors
Interconnection Structures
Inter Processor Arbitration
Inter Processor communication and synchronization
Cache Coherence

Introduction

 A multiprocessor system is an interconnection of two or more
CPUs with memory and I/O equipment.

 IOPs are generally not included in the definitions of
multiprocessor system unless they have computational facilities
comparable to CPUs.

 Multiprocessor are MIMD system.
 Multicomputer system includes number of computers connected

together by means of communication lines.

 A multiprocessor system is an interconnection of two or more
CPUs with memory and I/O equipment.

 IOPs are generally not included in the definitions of
multiprocessor system unless they have computational facilities
comparable to CPUs.

 Multiprocessor are MIMD system.
 Multicomputer system includes number of computers connected

together by means of communication lines.

 It improves reliability.
 If one system fails, the whole system continue to function with

perhaps low efficiency.
 The computation can proceed in parallel in two ways:
 Multiple independent jobs operate in parallel
 A single job can be partitioned into multiple parallel tasks
 Multiprocessor systems are classified by the way their

memory is organized:
1. tightly coupled systems (Shared memory)

2. loosely coupled systems (Distributed memory)

 It improves reliability.
 If one system fails, the whole system continue to function with

perhaps low efficiency.
 The computation can proceed in parallel in two ways:
 Multiple independent jobs operate in parallel
 A single job can be partitioned into multiple parallel tasks
 Multiprocessor systems are classified by the way their

memory is organized:
1. tightly coupled systems (Shared memory)

2. loosely coupled systems (Distributed memory)

Interconnection Structures
 The components of multiprocessor system include:
 CPUs
 IOPs
 I/O devices
 Memory

Interconnection networks for multiprocessor systems are:
 Time Shared Common Bus
 Multiport Memory
 Crossbar Switch
 Multistage switching network
 Hypercube System (Binary n- cube)

 The components of multiprocessor system include:
 CPUs
 IOPs
 I/O devices
 Memory

Interconnection networks for multiprocessor systems are:
 Time Shared Common Bus
 Multiport Memory
 Crossbar Switch
 Multistage switching network
 Hypercube System (Binary n- cube)

Assessing Network Alternatives

 Buses
 excellent cost scalability
 poor performance scalability

 Crossbars
 excellent performance scalability
 poor cost scalability

 Multistage interconnects
 compromise between these extremes

 Buses
 excellent cost scalability
 poor performance scalability

 Crossbars
 excellent performance scalability
 poor cost scalability

 Multistage interconnects
 compromise between these extremes

Time Shared Common Bus

Multiprocessor systems –system bus

Employs separate buses between each memory module and each CPU.
This is shown in Fig.for four CPUs and four memory modules (MMs).
Each processor bus is connected to each memory module (MM)
A processor bus consists of the address, data, and control lines
required to communicate with memory.
The MM is said to have 4 ports and each port accommodates one of the buses.
The module must have internal control logic to determine which port will have access to
memory at any given time.
Memory access conflicts are resolved by assigning fixed priorities to each memory port.

Multiport memory system

Employs separate buses between each memory module and each CPU.
This is shown in Fig.for four CPUs and four memory modules (MMs).
Each processor bus is connected to each memory module (MM)
A processor bus consists of the address, data, and control lines
required to communicate with memory.
The MM is said to have 4 ports and each port accommodates one of the buses.
The module must have internal control logic to determine which port will have access to
memory at any given time.
Memory access conflicts are resolved by assigning fixed priorities to each memory port.

 high transfer rate
 expensive memory control logic

memory modules

CP
U

s

Crossbar Switch

 Crossbar is the simplest and most flexible switch architecture.
 It uses an n×m grid of switches to connect n inputs to m outputs
 It can be used to establish simultaneously n connections between n inputs

and m outputs.
 When two or more inputs request the same output, it is called CONFLICT.

Only one of them is connected and others are either dropped or buffered
 A crossbar switch contains a matrix of simple switch elements that can

switch on and off to create or break a connection.
 Each crosspoint can be switched on or off under program control
 Turning on a switch element in the matrix, a connection between a

processor and a memory can be made.
 Crossbar switches are non-blocking, that is all communication

permutations can be performed without blocking.
 Crossbar switch is not scalable

 Crossbar is the simplest and most flexible switch architecture.
 It uses an n×m grid of switches to connect n inputs to m outputs
 It can be used to establish simultaneously n connections between n inputs

and m outputs.
 When two or more inputs request the same output, it is called CONFLICT.

Only one of them is connected and others are either dropped or buffered
 A crossbar switch contains a matrix of simple switch elements that can

switch on and off to create or break a connection.
 Each crosspoint can be switched on or off under program control
 Turning on a switch element in the matrix, a connection between a

processor and a memory can be made.
 Crossbar switches are non-blocking, that is all communication

permutations can be performed without blocking.
 Crossbar switch is not scalable

The crossbar switch organization consists of a number of crosspoints that are placed at
intersections between processor buses and memory module paths.
• Figure shows a crossbar switch interconnection between four CPUs and four memory
modules.
• The small square in each crosspoint is a switch that determines the path from a
processor to a memory module.
• Each switch point has control logic to set up the transfer path between a
processor and memory.
• It examines the address that is placed in the bus to determine whether its
particular module is being addressed. • It also resolves multiple requests for access to the
same memory module on a predetermined priority basis.
•

The crossbar switch organization consists of a number of crosspoints that are placed at
intersections between processor buses and memory module paths.
• Figure shows a crossbar switch interconnection between four CPUs and four memory
modules.
• The small square in each crosspoint is a switch that determines the path from a
processor to a memory module.
• Each switch point has control logic to set up the transfer path between a
processor and memory.
• It examines the address that is placed in the bus to determine whether its
particular module is being addressed. • It also resolves multiple requests for access to the
same memory module on a predetermined priority basis.
•

4

Each processor has switch to memory bus horizontally and processor-to-switch links vertically
A switch S having four I/O paths (0, 1, 2, 3)

: 0-1, 0-2, 0-3 : 1-0, 1-2,1-3 : 2-0, 2-1,2-3 : 3-0, 3-1,3-2

Figure shows the functional design of a crossbar switch connected to one memory
module.
The circuit consists of multiplexers that select the data, address, and control from
one CPU for communication with the memory module.
Priority levels are established by the arbitration logic to select one CPU when two or
more CPUs attempt to access the same memory.
A crossbar switch organization supports simultaneous transfers from all memory
modules because there is a separate path associated with each module.
However, the hardware required to implement the switch can become quite large and
complex.

Figure shows the functional design of a crossbar switch connected to one memory
module.
The circuit consists of multiplexers that select the data, address, and control from
one CPU for communication with the memory module.
Priority levels are established by the arbitration logic to select one CPU when two or
more CPUs attempt to access the same memory.
A crossbar switch organization supports simultaneous transfers from all memory
modules because there is a separate path associated with each module.
However, the hardware required to implement the switch can become quite large and
complex.

1(a) Use two-input AND and OR gates to construct NxN
crossbar switch network between N processors and N
memory modules. Use cij signal as the enable signal for the
switch in ith row and jth column. Let the width of each
crosspoint be w bits.
(b) Estimate the total number of AND and OR gates needed
as a function of N and w.

1(a) Use two-input AND and OR gates to construct NxN
crossbar switch network between N processors and N
memory modules. Use cij signal as the enable signal for the
switch in ith row and jth column. Let the width of each
crosspoint be w bits.
(b) Estimate the total number of AND and OR gates needed
as a function of N and w.

Problem (cont.)

...

Problem (cont.)

A simplify version of the arbiter. 2 x 2 crossbar

The crossbar uses priority to determine who gets to go first when Two PE try to communicate
with a single memory.
P1 has priority over P2 , P2 over P3, PN-1 over PN.
Cij is the control signals to determine which cross point gets “activated”.
The decoder gets an address (to determine which memory the PE wants to communicate with).
So for example, if P1 wants to communicate with M1, it would send 1 to C11 and C21 would get
0 (since there is a NOT gate). What that means if P2 wanted to c

Multistage Network
 MINs are a class of high-speed computer networks
 An MIN consists of a sequence of switching stages, each of which consists of

several switches.
 The switching stages are connected with inter stage links between successive

stages, usually composed of processing elements (PEs) on one end of the network
and memory elements (MEs) on the other end, connected by switching elements
(SEs).

 The switching elements themselves are usually connected to each other in stages.

 MINs are a class of high-speed computer networks
 An MIN consists of a sequence of switching stages, each of which consists of

several switches.
 The switching stages are connected with inter stage links between successive

stages, usually composed of processing elements (PEs) on one end of the network
and memory elements (MEs) on the other end, connected by switching elements
(SEs).

 The switching elements themselves are usually connected to each other in stages.

Multistage Switching Interconnection Networks (MINs)

 .

The basic component of MIN is a 2 X 2
interchange switch.

 2 x 2 switch has two inputs, labeled A and B,
and two outputs, labeled 0 and 1.

There are control signals associated with the
switch that establish the interconnection
between the input and output terminals.

switching elements

The basic component of MIN is a 2 X 2
interchange switch.

 2 x 2 switch has two inputs, labeled A and B,
and two outputs, labeled 0 and 1.

There are control signals associated with the
switch that establish the interconnection
between the input and output terminals.

2 × 2 Switches

control signals

The switch has the capability of connecting input A to either of the outputs.
Terminal B of the switch; behaves in a similar fashion.
 The switch also has the capability to arbitrate between conflicting requests.
If inputs A and B both request the same output terminal, only one of them will be
connected; the other will be blocked.
Using the 2 x 2 switch as a building block, it is possible to build a multistage network

to control the communication between a number of sources and destinations

MINs networks can be categorized on the basis of their topology.
Topology is the pattern in which one node is connected to other nodes.
There are two main types of topology: static and dynamic
Static interconnect networks are hard-wired and cannot change their
configurations. point-to-point communication links

– that don’t change dynamically (e.g., trees, rings, meshes)
Dynamic networks: that change interconnectivity dynamically

Implemented with switched communication links
(e.g.,system buses, crossbar switches, multistage networks)

The regular structure signifies that the nodes are arranged in specific shape
and the shape is maintained throughout the networks.
The way input units are connected with the output units, determine the
functional characteristics of the network, i.e., the allowable interconnections
In a single stage network, data may have to be passed through the switches
several times before reaching the final destination.
In multistage network, one pass of multistage stages of switches is usually
sufficient.

Network Topology

MINs networks can be categorized on the basis of their topology.
Topology is the pattern in which one node is connected to other nodes.
There are two main types of topology: static and dynamic
Static interconnect networks are hard-wired and cannot change their
configurations. point-to-point communication links

– that don’t change dynamically (e.g., trees, rings, meshes)
Dynamic networks: that change interconnectivity dynamically

Implemented with switched communication links
(e.g.,system buses, crossbar switches, multistage networks)

The regular structure signifies that the nodes are arranged in specific shape
and the shape is maintained throughout the networks.
The way input units are connected with the output units, determine the
functional characteristics of the network, i.e., the allowable interconnections
In a single stage network, data may have to be passed through the switches
several times before reaching the final destination.
In multistage network, one pass of multistage stages of switches is usually
sufficient.

Single Stage Interconnect Network

The input nodes are connected to output via a single stage of switches.
The figure shows 8*8 single stage switch using shuffle exchange.

The way input units are connected with the output units, determine the
functional characteristics of the network, i.e., the allowable interconnections.

Static vs. Dynamic

direct links
which are fixed

once built.

Switching element : maps a fixed
number of inputs to outputs

direct links
which are fixed

once built.

 Multistage switches provide better blocking performance than single
stage switches, as they provide alternative paths for a particular
source destination pair. nodes at ends, switches in middle

 Increasing the number of stages will lead to advantage in the number
of Cross Points. But the complexity also increases, so overall
advantage is not much.

Classification
Non-blocking: A non-blocking network can connect any idle input to any idle
output, regardless of the connections already established across the network.
Crossbar is an example of this type of network.

Rearrangeable non-blocking: This type of network can establish all possible
connections between inputs and outputs by rearranging its existing connections.

Blocking: It can perform many, but cannot realize all possible
connections between terminals. Example: the Omega network
This is because a connection between one free input to another free output is
blocked by an existing connection in network.

Classification of Multistage Interconnect Network
 Multistage switches provide better blocking performance than single

stage switches, as they provide alternative paths for a particular
source destination pair. nodes at ends, switches in middle

 Increasing the number of stages will lead to advantage in the number
of Cross Points. But the complexity also increases, so overall
advantage is not much.

Classification
Non-blocking: A non-blocking network can connect any idle input to any idle
output, regardless of the connections already established across the network.
Crossbar is an example of this type of network.

Rearrangeable non-blocking: This type of network can establish all possible
connections between inputs and outputs by rearranging its existing connections.

Blocking: It can perform many, but cannot realize all possible
connections between terminals. Example: the Omega network
This is because a connection between one free input to another free output is
blocked by an existing connection in network.

Multi Stage Interconnect Network

 A multistage network consists of multiple stages of switches. 2x2 switch
elements are a common choice for many multistage networks.

 The number of stages determine the delay of the network.
 By choosing different interstage connection patterns, various types of

multistage network can be created.
 The two processors P1 and P2 are connected through switches to eight
memory modules marked in binary from 0 0 0 through 111.
 The path from a source to a destination is determined from the
binary bits of the destination number

 The two processors P1 and P2 are connected through switches to eight
memory modules marked in binary from 0 0 0 through 111.
 The path from a source to a destination is determined from the
binary bits of the destination number

e.g, to connect P1 to memory 101, it is necessary to
form a path from P to output 1 in the first-level switch,
output 0 in the second-level switch, and output 1 in
the third-level switch.
It is clear that either P1 or P2 can be connected to any
one of the eight memories, Certain request patterns,
however, cannot be satisfied simultaneously.
For example, if P1 is connected to one of the
destinations 0 0 0 through 0 11 ,P2 can be connected
to only one of the destinations 1 0 0 through 111.

Omega Network Stage
One topology proposed for MINs to control processor—memory communication in a
tightly coupled multiprocessor system or to control the communication between the
processing elements in a loosely coupled.
One such topology is the omega switching network shown in Fig.
In this configuration, there is exactly one path from each source to any particular
destination. Some request patterns, however, cannot be connected simultaneously. For
example, any two sources cannot he connected simultaneously to destinations 0 0 0
through 111.
Some request patterns, however, cannot be connected simultaneously.
For example, any two sources cannot he connected simultaneously to destinations
0 0 0 through 111

One topology proposed for MINs to control processor—memory communication in a
tightly coupled multiprocessor system or to control the communication between the
processing elements in a loosely coupled.
One such topology is the omega switching network shown in Fig.
In this configuration, there is exactly one path from each source to any particular
destination. Some request patterns, however, cannot be connected simultaneously. For
example, any two sources cannot he connected simultaneously to destinations 0 0 0
through 111.
Some request patterns, however, cannot be connected simultaneously.
For example, any two sources cannot he connected simultaneously to destinations
0 0 0 through 111

 An omega network consists of multiple stages of 2X2 switching elements.
 Each input has a dedicated connection to an output.
 An N*N omega network, (N processing element) has log2 (N) number of

stages and N/2 number of switching elements in each stage
 uses perfect shuffle between stages.

Omega Network

 An omega network consists of multiple stages of 2X2 switching elements.
 Each input has a dedicated connection to an output.
 An N*N omega network, (N processing element) has log2 (N) number of

stages and N/2 number of switching elements in each stage
 uses perfect shuffle between stages.

perfect shuffle
of inputs of n PEs
to n/2 switches

Omega networks
 A multi-stage IN using 2 × 2 switch boxes and a perfect shuffle

interconnect pattern between the stages
 In the Omega MIN there is one unique path from each input to each

output.
 No redundant paths → no fault tolerance and the possibility of blocking.

Example:
• Connect input 101 to output 001
• Use the bits of the destination
address, 001, for dynamically
selecting a path
• Routing:

- 0 means use upper output
- 1 means use lower output

27

 A multi-stage IN using 2 × 2 switch boxes and a perfect shuffle
interconnect pattern between the stages

 In the Omega MIN there is one unique path from each input to each
output.

 No redundant paths → no fault tolerance and the possibility of blocking.
Example:
• Connect input 101 to output 001
• Use the bits of the destination
address, 001, for dynamically
selecting a path
• Routing:

- 0 means use upper output
- 1 means use lower output

Omega Network Routing
 Let

 s = binary representation of the source processor
 d = binary representation of the destination processor or

memory
 The data traverses the link to the first switching node

 if the most significant bit of s and d are the same
 route data in pass-through mode by the switch

 else
 use crossover path

 Strip off leftmost bit of s and d
 Repeat for each of the log2 N switching stages

 Let
 s = binary representation of the source processor
 d = binary representation of the destination processor or

memory
 The data traverses the link to the first switching node

 if the most significant bit of s and d are the same
 route data in pass-through mode by the switch

 else
 use crossover path

 Strip off leftmost bit of s and d
 Repeat for each of the log2 N switching stages

Omega Network Routing

The source node generates a tag, which is binary equivalent
Of the destination. At each switch, the corresponding tag bit
is checked.
 If the bit is 0, the input is connected to the upper output.

If it is 1, the Input is connected to the lower output.

How to connect PE 001 to Memory module 100 ?

switch

switch

The source node generates a tag, which is binary equivalent
Of the destination. At each switch, the corresponding tag bit
is checked.
 If the bit is 0, the input is connected to the upper output.

If it is 1, the Input is connected to the lower output.

switch

switch

Blocking in an Omega Network
Are u able to connect simultaneously :
(i) PE 010 to Memory module 111 and (ii) PE 110 to Memory module 100 ?

switch conflict : If both inputs of the switch have either 0 or 1. One of them is
connected. The other one is rejected or buffered at the switch

Hypercube Interconnection
 Hypercube or binary n-cube multiprocessor structure is a

loosely coupled system.
 It composed of N=2n processors interconnected in n-

dimensional binary cube.
 Each processor form the node of the cube.
 Each processor has direct communication path with (n) other

neighbor processor.
 There are 2n distinct n-bit binary address that can be assigned

to each processor.

 Hypercube or binary n-cube multiprocessor structure is a
loosely coupled system.

 It composed of N=2n processors interconnected in n-
dimensional binary cube.

 Each processor form the node of the cube.
 Each processor has direct communication path with (n) other

neighbor processor.
 There are 2n distinct n-bit binary address that can be assigned

to each processor.

Hypercube Connection

Special d-dimensional mesh: p nodes, d = log p

n-cube can be formed by interconnecting corresponding nodes of two (n-1)-cubes
2 nodes are adjacent if they differ in exactly 1 bit.

Static Interconnects

Hypercube (cont.)
Point-to-point Routing

compare IDs of S & D, if S > D
look at left most bit

Ex. S 101 and D 000
Broadcasting (suppose from 0)
Step 1 Step 2
0 – 1 0 - 2

1 - 3

Multi stage 3-cube
i) Routing by least significant bit (C0)
0 – 1 , 2–3 , 4 – 5 , 6–7
ii) Routing by least significant bit (C1)
0 – 2 , 1–3 , 4 – 6 , 5–7
iii) Routing by least significant bit (C2)
0 – 4 , 1–5, 2 – 6 , 3–7

010

110 111

(C1)

Hypercube (cont.)
Point-to-point Routing

compare IDs of S & D, if S > D
look at left most bit

Ex. S 101 and D 000
Broadcasting (suppose from 0)
Step 1 Step 2
0 – 1 0 - 2

1 - 3

Multi stage 3-cube
i) Routing by least significant bit (C0)
0 – 1 , 2–3 , 4 – 5 , 6–7
ii) Routing by least significant bit (C1)
0 – 2 , 1–3 , 4 – 6 , 5–7
iii) Routing by least significant bit (C2)
0 – 4 , 1–5, 2 – 6 , 3–7

Step 3
0 - 4
1 - 5
2 - 6
3 – 7

000 001

101100
(C1)

(C0)

(C3)

Interprocessor Arbitration
 Computer system contains number of buses at various levels

to facilitate the transfer of information.
 A bus that connects major components in a multiprocessor

system (such as CPU, IOP and memory) is called system bus.
 Arbitration logic is the part of th system bus controller placed

between local bus and system bus that resolve the multiple
contention for shared resources.

 Computer system contains number of buses at various levels
to facilitate the transfer of information.

 A bus that connects major components in a multiprocessor
system (such as CPU, IOP and memory) is called system bus.

 Arbitration logic is the part of th system bus controller placed
between local bus and system bus that resolve the multiple
contention for shared resources.

System Bus
 A typical system bus consists of approximately 100 signal lines.
 System bus is divided into 3 functional groups of lines :

data bus , address bus and control bus.
 In addition there are power distribution lines that supply power to

the components.
 Ex. IEEE standard 796 multi bus system has 16 data lines, 24

address lines, 26 control lines and 20 power lines for total of 86
lines.

 Data lines provide a path for the transfer of data between
processor and common memory.

 The number of data lines are usually multiple of 8, with 16 and 32
being the most common.

 A typical system bus consists of approximately 100 signal lines.
 System bus is divided into 3 functional groups of lines :

data bus , address bus and control bus.
 In addition there are power distribution lines that supply power to

the components.
 Ex. IEEE standard 796 multi bus system has 16 data lines, 24

address lines, 26 control lines and 20 power lines for total of 86
lines.

 Data lines provide a path for the transfer of data between
processor and common memory.

 The number of data lines are usually multiple of 8, with 16 and 32
being the most common.

 Address lines are used to indentify memory location or any other
source and destination units.

 The number of address lines determine the maximum possible
memory capacity in the system.

 The control lines provides signal for controlling information
transfer.

 Timing signals indicate validity of data and address.
 Command signal specify the operation to be performed.
 Data transfer on the system can be either Synchronous

Or Asynchronous

 Address lines are used to indentify memory location or any other
source and destination units.

 The number of address lines determine the maximum possible
memory capacity in the system.

 The control lines provides signal for controlling information
transfer.

 Timing signals indicate validity of data and address.
 Command signal specify the operation to be performed.
 Data transfer on the system can be either Synchronous

Or Asynchronous

Arbitration Procedure
 Arbitration procedure services all processor requests on the basis

of established priorities.
 It can be implemented either HW (static) or SW (dynamic)

Arbitration techniques:
i) Static Techniques

 Serial Arbitration (Serial Connection of Units)
 Parallel Arbitration (Parallel Connection of Units)
In static techniques the priorities assigned are fixed.
ii) Dynamic Techniques
Dynamic arbitration priorities of the system change while the

system is in operation.

 Arbitration procedure services all processor requests on the basis
of established priorities.

 It can be implemented either HW (static) or SW (dynamic)
Arbitration techniques:

i) Static Techniques
 Serial Arbitration (Serial Connection of Units)
 Parallel Arbitration (Parallel Connection of Units)
In static techniques the priorities assigned are fixed.
ii) Dynamic Techniques
Dynamic arbitration priorities of the system change while the

system is in operation.

Serial Arbitration Procedure
 It is obtained from daisy chain connection of bus arbitration circuit

similar to the case of priority interrupt.
 Each bus has its own arbiter logic which are arranged according to

the priorities from highest to the lowest.
 The daisy-chaining method involves connecting all the devices that

can request an interrupt in a serial manner.
This configuration is governed by the priority of the devices.
The device with the highest priority is placed first followed by the
second highest priority device and so on.
The given figure depicts this arrangement.

 It is obtained from daisy chain connection of bus arbitration circuit
similar to the case of priority interrupt.

 Each bus has its own arbiter logic which are arranged according to
the priorities from highest to the lowest.

 The daisy-chaining method involves connecting all the devices that
can request an interrupt in a serial manner.
This configuration is governed by the priority of the devices.
The device with the highest priority is placed first followed by the
second highest priority device and so on.
The given figure depicts this arrangement.

Daisy Chain Bus Arbitration

Bus
Arbiter

Device 1
Highest
Priority

Device N
Lowest
Priority

Device
2

Ack Ack Ack
Release

Request

wired-OR

 Advantage: simple
 Disadvantages:

 Cannot assure fairness – a low-priority device may be
locked out indefinitely

 Slower – the daisy chain grant signal limits the bus speed

wired-OR
Data/Addr

PO-priority out
PI -priority in

 Daisy chain is a wiring scheme in which multiple devices are wired together in sequence.
 The higher priority device will pass the grant line to the lower priority device only if it

does not want to use the bus.
 Then priority is forwarded to the next in the sequence.

PO-priority out
PI -priority in

WORKING
 The interrupt request line which is common to all the devices and CPU.
 When there is no interrupt, the interrupt request line (IRL)is in HIGH state.
 A device that raises an interrupt places the IRL in the LOW state.
 The CPU acknowledges this interrupt request from the line and then enables

the interrupt acknowledge line in response to the request.
 This signal is received at the PI (Priority in) input of device 1.
 If the device has not requested the interrupt, it passes this signal to the next

device through its PO (priority out) output. (PI = 1 & PO = 1)
 However, if the device had requested the interrupt, (PI =1 & PO = 0)

• The device consumes the acknowledge signal and block its further use by
placing 0 at its PO (priority out) output.

• The device then proceeds to place its interrupt vector address (VAD) into
the data bus of CPU.

• The device puts its interrupt request signal in HIGH state to indicate its
interrupt has been taken care of.

 The interrupt request line which is common to all the devices and CPU.
 When there is no interrupt, the interrupt request line (IRL)is in HIGH state.
 A device that raises an interrupt places the IRL in the LOW state.
 The CPU acknowledges this interrupt request from the line and then enables

the interrupt acknowledge line in response to the request.
 This signal is received at the PI (Priority in) input of device 1.
 If the device has not requested the interrupt, it passes this signal to the next

device through its PO (priority out) output. (PI = 1 & PO = 1)
 However, if the device had requested the interrupt, (PI =1 & PO = 0)

• The device consumes the acknowledge signal and block its further use by
placing 0 at its PO (priority out) output.

• The device then proceeds to place its interrupt vector address (VAD) into
the data bus of CPU.

• The device puts its interrupt request signal in HIGH state to indicate its
interrupt has been taken care of.

NOTE:
 Interrupt vector address (VAD) is the address of the service routine

which services that device.
 If a device gets 0 at its PI input, it generates 0 at the PO output to

tell other devices that acknowledge signal has been blocked. (PI =
0 & PO = 0)

 Hence, the device having PI = 1 and PO = 0 is the highest priority
device that is requesting an interrupt.

 Therefore, by daisy chain arrangement ensures that the highest
priority interrupt gets serviced first and have established a
hierarchy.

 The farther a device is from the first device, the lower its priority.

NOTE:
 Interrupt vector address (VAD) is the address of the service routine

which services that device.
 If a device gets 0 at its PI input, it generates 0 at the PO output to

tell other devices that acknowledge signal has been blocked. (PI =
0 & PO = 0)

 Hence, the device having PI = 1 and PO = 0 is the highest priority
device that is requesting an interrupt.

 Therefore, by daisy chain arrangement ensures that the highest
priority interrupt gets serviced first and have established a
hierarchy.

 The farther a device is from the first device, the lower its priority.

Parallel Arbitration Logic
 It uses an external priority encoder and decoder.
 Each bus arbiter has a bus request output lines and a bus

acknowledge input lines.
 Each arbiter enables request lines when its processor is

requesting the system bus.
 The one with highest priority determine by the output of the

decoder get access to the bus.

 It uses an external priority encoder and decoder.
 Each bus arbiter has a bus request output lines and a bus

acknowledge input lines.
 Each arbiter enables request lines when its processor is

requesting the system bus.
 The one with highest priority determine by the output of the

decoder get access to the bus.

Centralized Parallel Arbitration

Bus
Arbiter

Device 1 Device NDevice 2

Ack1
Ack2

AckN

Request1 Request2 RequestN

 Advantages: flexible, can assure fairness
 Disadvantages: more complicated arbiter hardware
 Used in essentially all processor-memory buses and in

high-speed I/O buses

Data/Addr

 The devices independently request the bus by
using multiple request lines.

 A centralized arbiter chooses from among the
devices requesting bus access and notifies the
selected device that it is now the bus master
via one of the grant line.

 Consider: A has the highest priority and C the
lowest. H

How bus is granted to different bus masters?
 Since A has the highest priority, Grant A will be

asserted even though both requests A and B
are asserted.

 Device A will keep Request A asserted until it
no longer needs the bus so when Request A
goes low, the arbiter will disable Grant A.

 Since Request B remains asserted (Device B
has not gotten the bus yet) at this time, the
arbiter will then assert Grant B to grant Device
B access to the bus.

 Similarly, Device B will not disable Request B
until it is done with the bus.

Centralized Arbitration
(Parallel Arbitration)

 The devices independently request the bus by
using multiple request lines.

 A centralized arbiter chooses from among the
devices requesting bus access and notifies the
selected device that it is now the bus master
via one of the grant line.

 Consider: A has the highest priority and C the
lowest. H

How bus is granted to different bus masters?
 Since A has the highest priority, Grant A will be

asserted even though both requests A and B
are asserted.

 Device A will keep Request A asserted until it
no longer needs the bus so when Request A
goes low, the arbiter will disable Grant A.

 Since Request B remains asserted (Device B
has not gotten the bus yet) at this time, the
arbiter will then assert Grant B to grant Device
B access to the bus.

 Similarly, Device B will not disable Request B
until it is done with the bus.

Priority Encoder (or priority decoder)

 Priority encoders are typically used when a set of components (e.g., processor,
memory, I/O devices, etc.) are to share a common resource (e.g., a bus).

 Each component is assigned a certain priority according to its nature
(importance), so that when more than one components request the resource,
the one with the highest priority will be granted the usage.

 The most significant bit of the input corresponds to the highest priority while
the least significant bit the lowest priority.

 All inputs with lower priorities are ignored.
 The output represents the component granted with the usage of the resource.
 Output index number is either binary encoded y1y0 or one-hot encoded by

ignoring all lower priorities input .(treated as don't cares).

 Priority encoders are typically used when a set of components (e.g., processor,
memory, I/O devices, etc.) are to share a common resource (e.g., a bus).

 Each component is assigned a certain priority according to its nature
(importance), so that when more than one components request the resource,
the one with the highest priority will be granted the usage.

 The most significant bit of the input corresponds to the highest priority while
the least significant bit the lowest priority.

 All inputs with lower priorities are ignored.
 The output represents the component granted with the usage of the resource.
 Output index number is either binary encoded y1y0 or one-hot encoded by

ignoring all lower priorities input .(treated as don't cares).

Dynamic Arbitration Algorithm
 Serial and parallel bus arbitration are static since the priorities

assigned is fixed.
 In dynamic arbitration priorities of the system change while

the system is in operation.
 The various algorithms used are:

 Time Slice
 Polling
 Least Recently Used (LRU)
 First In First Out (FIFO)
 Rotating Daisy Chain

 Serial and parallel bus arbitration are static since the priorities
assigned is fixed.

 In dynamic arbitration priorities of the system change while
the system is in operation.

 The various algorithms used are:
 Time Slice
 Polling
 Least Recently Used (LRU)
 First In First Out (FIFO)
 Rotating Daisy Chain

Inter processor Communication

 All the processors in the multi processor system need to communicate
with each other.

Problems inherent in Inter processor Communication
Starvation
Deadlock
Data Inconsistency
Shared Buffer Problems
i) The most common way is to set aside portion of memory that is accessible to

all processor (common memory)
 Sending processor puts the data and the address of the receiving

processor in the memory.
 All the processor periodically check the memory for any information.
 If they find their address they read the data.
 This procedure is time consuming

 All the processors in the multi processor system need to communicate
with each other.

Problems inherent in Inter processor Communication
Starvation
Deadlock
Data Inconsistency
Shared Buffer Problems
i) The most common way is to set aside portion of memory that is accessible to

all processor (common memory)
 Sending processor puts the data and the address of the receiving

processor in the memory.
 All the processor periodically check the memory for any information.
 If they find their address they read the data.
 This procedure is time consuming

 ii)Use of interrupt facility
To send the interrupt signal to the receiving processor whenever the
sending processor leaves the message.

 In addition to shared memory, multiprocessor system may have other
shared resources.

 Two primary forms of data exchange between parallel tasks - accessing a
shared data space and exchanging messages.

 Platforms that provide a shared data space are called shared-address-
space machines or tightly coupled systems or multiprocessors.

 Platforms that support messaging are also called message passing
platforms or multi-computers or loosely coupled systems (Distributed
memory)

 To prevent the conflicting use of shared resources by several processor
there must be provision for assigning resources to processor.

 This task is handled by the Operating System.

 ii)Use of interrupt facility
To send the interrupt signal to the receiving processor whenever the
sending processor leaves the message.

 In addition to shared memory, multiprocessor system may have other
shared resources.

 Two primary forms of data exchange between parallel tasks - accessing a
shared data space and exchanging messages.

 Platforms that provide a shared data space are called shared-address-
space machines or tightly coupled systems or multiprocessors.

 Platforms that support messaging are also called message passing
platforms or multi-computers or loosely coupled systems (Distributed
memory)

 To prevent the conflicting use of shared resources by several processor
there must be provision for assigning resources to processor.

 This task is handled by the Operating System.

 There are three organization that have been used in design of
OS of multiprocessor:
 Master-Slave Configuration
 Separate OS
 Distributed OS

i) Master slave configuration
 One processor designated as master execute OS function.
 If slave processor needs OS service, it must place request to

the master processor.

OS for Multiprocessors

 There are three organization that have been used in design of
OS of multiprocessor:
 Master-Slave Configuration
 Separate OS
 Distributed OS

i) Master slave configuration
 One processor designated as master execute OS function.
 If slave processor needs OS service, it must place request to

the master processor.

ii) Separate OS
 Every processor have its own copy of the entire OS.
 Each processor can execute the OS routine as and when it needed.
 This organization is suited for loosely coupled system.

iii) Distributed OS
 The OS routines are distributed among the processors.
 Each particular OS function is assigned to only one processor at a

time.
 Since the routines float from one processor to another it is also

called floating OS.

ii) Separate OS
 Every processor have its own copy of the entire OS.
 Each processor can execute the OS routine as and when it needed.
 This organization is suited for loosely coupled system.

iii) Distributed OS
 The OS routines are distributed among the processors.
 Each particular OS function is assigned to only one processor at a

time.
 Since the routines float from one processor to another it is also

called floating OS.

Inter processor Synchronization

 Synchronization is a special case of communication where data
used to communicate between processors is a control
information.

 It is needed to enforce correct sequence of process and to ensure
mutually exclusive access to shared writable data.

 A number of hardware mechanisms for mutual exclusion have
been developed.

 One of the most popular is through the use of binary semaphore.

 Synchronization is a special case of communication where data
used to communicate between processors is a control
information.

 It is needed to enforce correct sequence of process and to ensure
mutually exclusive access to shared writable data.

 A number of hardware mechanisms for mutual exclusion have
been developed.

 One of the most popular is through the use of binary semaphore.

Mutual Exclusion with Semaphore
 Proper functioning multi-processor should guarantee orderly

access to shared resources. So that data can not be changed
simultaneously by two processor.

 This is called mutual exclusion.
 Mutual exclusion must be provided to enable one processor to

lock out access to shared resources once it entered in critical
section.

 Critical section is a program sequence, that must be completed
once begun.i.e. set of instructions that must be controlled so
as to allow exclusive access to one process.

 Execution of the critical section by processes is mutually
exclusive in time.

 Proper functioning multi-processor should guarantee orderly
access to shared resources. So that data can not be changed
simultaneously by two processor.

 This is called mutual exclusion.
 Mutual exclusion must be provided to enable one processor to

lock out access to shared resources once it entered in critical
section.

 Critical section is a program sequence, that must be completed
once begun.i.e. set of instructions that must be controlled so
as to allow exclusive access to one process.

 Execution of the critical section by processes is mutually
exclusive in time.

 Binary variable semaphore is used to indicate whether the
processor is in critical section.

 Semaphore is software controlled flag stored in common
memory.

 If it is 1, processor is executing critical section. If it is 0, it
indicate common memory is available for the other processor.

 Testing and setting semaphore is itself a critical task and must be
performed in single indivisible task.

 Binary variable semaphore is used to indicate whether the
processor is in critical section.

 Semaphore is software controlled flag stored in common
memory.

 If it is 1, processor is executing critical section. If it is 0, it
indicate common memory is available for the other processor.

 Testing and setting semaphore is itself a critical task and must be
performed in single indivisible task.

 A semaphore can be initialized by means of test and set
instruction in conjunction with a hardware lock mechanism.

 A hardware lock is processor generated signal that prevent
other processor from using system bus as long as signal is
active.

 Test and set instruction tests and sets semaphore and activate
lock mechanism during the time that it is testing and setting it.

 A semaphore can be initialized by means of test and set
instruction in conjunction with a hardware lock mechanism.

 A hardware lock is processor generated signal that prevent
other processor from using system bus as long as signal is
active.

 Test and set instruction tests and sets semaphore and activate
lock mechanism during the time that it is testing and setting it.

 The last instruction in the program must be clear location SEM
to 0 to released shared resource to other processor.

 Lock signal must be active during execution of test and set
instruction.

 It does not have to be active once semaphore is set.

 The last instruction in the program must be clear location SEM
to 0 to released shared resource to other processor.

 Lock signal must be active during execution of test and set
instruction.

 It does not have to be active once semaphore is set.

Using binary Semaphore p1
or queue semaphore p2P1

Critical
region

S Semaphore

Shared
data

structure

P(S)

P2

Critical
region

P(S)

Busy
Wait

V(S)

Shared
data

structure
V(S)

Figure . Using a semaphore to solve the mutual execution problem

Cache Coherence

 In shared memory multi-processor system it is customary to
have one or two levels of cache associated with each processor.

 Caches in such machines require coordinated access to multiple
copies as read-write data to shared data must be coordinated .

 This organization is essential to achieve high performance.
 Cache creates a problem which is known as the cache coherence

problem.
 The cache coherence problem is: Multiple copies of the same data

can exist in different caches simultaneously, and if processors are
allowed to update their own copies freely, an inconsistent view of
memory can result.

 To ensure ability of the system to execute memory instruction
independently, multiple copies of the data must be identical which
is called cache coherence.

 In shared memory multi-processor system it is customary to
have one or two levels of cache associated with each processor.

 Caches in such machines require coordinated access to multiple
copies as read-write data to shared data must be coordinated .

 This organization is essential to achieve high performance.
 Cache creates a problem which is known as the cache coherence

problem.
 The cache coherence problem is: Multiple copies of the same data

can exist in different caches simultaneously, and if processors are
allowed to update their own copies freely, an inconsistent view of
memory can result.

 To ensure ability of the system to execute memory instruction
independently, multiple copies of the data must be identical which
is called cache coherence.

Condition to cache Incoherence
 This condition arise when the processor need to share the

writable data.
 In both policy write back and write through incoherence

condition is created.
 Write back: Write operations are usually made only to the

cache. Main memory is only updated when the
corresponding cache line is flushed from the cache.

 Write through: All write operations are made to main
memory as well as to the cache, ensuring that main
memory is always valid

 This condition arise when the processor need to share the
writable data.

 In both policy write back and write through incoherence
condition is created.

 Write back: Write operations are usually made only to the
cache. Main memory is only updated when the
corresponding cache line is flushed from the cache.

 Write through: All write operations are made to main
memory as well as to the cache, ensuring that main
memory is always valid

Cache Coherence

 In shared memory multi-processor system, processor
share memory and they have local memory(part or all
of which is cache).

 To ensure ability of the system to execute memory
instruction independently, multiple copies of the data
must be identical which is called cache coherence.

 In shared memory multi-processor system, processor
share memory and they have local memory(part or all
of which is cache).

 To ensure ability of the system to execute memory
instruction independently, multiple copies of the data
must be identical which is called cache coherence.

local memories

Cache Coherence due to Write through policy

Cache Coherence due to Write back policy

Solution using Software
 A simple way is to disallow to have private caches and use the common

memory for shared resources.
 Another way is to cache only the read only data in the local cache and

use the common memory for writable data.
 A scheme that allows writable data to reside in only one cache .
 A centralized global table is used to maintain details:
 Status of each memory block as read only (RO) or

read write (RW) is stored.
 All local cache can store RO memory blocks.
 RW memory blocks are stored only in one cache that is shared by all.

 A simple way is to disallow to have private caches and use the common
memory for shared resources.

 Another way is to cache only the read only data in the local cache and
use the common memory for writable data.

 A scheme that allows writable data to reside in only one cache .
 A centralized global table is used to maintain details:
 Status of each memory block as read only (RO) or

read write (RW) is stored.
 All local cache can store RO memory blocks.
 RW memory blocks are stored only in one cache that is shared by all.

Hardware Solution

Snoopy cache controller
 A hardware specially designed to watch the system bus for

write operation.
 When a word is updated in cache, main memory is also updated.
 Local snoopy controller watch the cache if they have the

address updated.
- If the copy exist, it is marked invalid.
- If CPU request the same address, it is fetch from the main

memory and updated in cache.

Snoopy cache controller
 A hardware specially designed to watch the system bus for

write operation.
 When a word is updated in cache, main memory is also updated.
 Local snoopy controller watch the cache if they have the

address updated.
- If the copy exist, it is marked invalid.
- If CPU request the same address, it is fetch from the main

memory and updated in cache.

